Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 924: 171645, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38479523

RESUMEN

The origin of introduction of a new pathogen in a country, the evolutionary dynamics of an epidemic within a country, and the role of cross-border areas on pathogen dynamics remain complex to disentangle and are often poorly understood. For instance, cross-border areas represent the ideal location for the sharing of viral variants between countries, with international air travel, land travel and waterways playing an important role in the cross-border spread of infectious diseases. Unfortunately, monitoring the point of entry and the evolutionary dynamics of viruses in space and time within local populations remain challenging. Here we tested the efficiency of wastewater-based epidemiology and genotyping in monitoring Covid-19 epidemiology and SARS-CoV-2 variant dynamics in French Guiana, a tropical country located in South America. Our results suggest that wastewater-based epidemiology and genotyping are powerful tools to monitor variant introduction and disease evolution within a tropical country but the inclusion of both clinical and wastewater samples could still improve our understanding of genetic diversity co-circulating. Wastewater sequencing also revealed the cryptic transmission of SARS-CoV-2 variants within the country. Interestingly, we found some amino acid changes specific to the variants co-circulating in French Guiana, suggesting a local evolution of the SARS-CoV-2 variants after their introduction. More importantly, our results showed that the proximity to bordering countries was not the origin of the emergence of the French Guianese B.1.160.25 variant, but rather that this variant emerged from an ancestor B.1.160 variant introduced by European air plane travelers, suggesting thus that air travel remains a significant risk for cross-border spread of infectious diseases. Overall, we suggest that wastewater-based epidemiology and genotyping provides a cost effective and non-invasive approach for pathogen monitoring and an early-warning tool for disease emergence and spread within a tropical country.


Asunto(s)
COVID-19 , Enfermedades Transmisibles , Humanos , Guyana Francesa/epidemiología , SARS-CoV-2/genética , Aguas Residuales , COVID-19/epidemiología , América del Sur
3.
Bioinformatics ; 38(7): 2033-2035, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35080622

RESUMEN

MOTIVATION: Amplicon-based nanopore sequencing is increasingly used for molecular surveillance during epidemics (e.g. ZIKA, EBOLA) or pandemics (e.g. SARS-CoV-2). However, there is still a lack of versatile and easy-to-use tools that allow users with minimal bioinformatics skills to perform the main steps of downstream analysis, from quality testing to SNPs effect to phylogenetic analysis. RESULTS: Here, we present ONTdeCIPHER, an amplicon-based Oxford Nanopore Technology sequencing pipeline to analyze the genetic diversity of SARS-CoV-2 and other pathogens. Our pipeline integrates 13 bioinformatics tools. With a single command line and a simple configuration file, users can pre-process their data and obtain the sequencing statistics, reconstruct the consensus genome, identify variants and their effects for each viral isolate, infer lineage and, finally perform multi-sequence alignments and phylogenetic analyses. AVAILABILITY AND IMPLEMENTATION: ONTdeCIPHER is available at https://github.com/emiracherif/ONTdeCIPHER. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
COVID-19 , Secuenciación de Nanoporos , Infección por el Virus Zika , Virus Zika , Humanos , SARS-CoV-2/genética , Programas Informáticos , Filogenia , Secuenciación de Nucleótidos de Alto Rendimiento
4.
Mol Ecol ; 29(20): 4000-4013, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32854141

RESUMEN

The inadequacy of standard mosquito control strategies calls for ecologically safe novel approaches, for example the use of biological agents such as the endosymbiotic α-proteobacteria Wolbachia or insect-specific viruses (ISVs). Understanding the ecological interactions between these "biocontrol endosymbionts" is thus a fundamental step. Wolbachia are transmitted vertically from mother to offspring and modify their hosts' phenotypes, including reproduction (e.g., cytoplasmic incompatibility) and survival (e.g., viral interference). In nature, Culex pipiens (sensu lato) mosquitoes are always found infected with genetically diverse Wolbachia called wPip that belong to five phylogenetic groups. In recent years, ISVs have also been discovered in these mosquito species, although their interactions with Wolbachia in nature are unknown. Here, we studied the interactions between a widely prevalent ISV, the Culex pipiens densovirus (CpDV, Densovirinae), and Wolbachia in northern Tunisian C. pipiens populations. We showed an influence of different Wolbachia groups on CpDV prevalence and a general positive correlation between Wolbachia and CpDV loads. By investigating the putative relationship between CpDV diversification and wPip groups in the different sites, we detected a signal linked to wPip groups in CpDV phylogeny in sites where all larvae were infected by the same wPip group. However, no such signal was detected where the wPip groups coexisted, suggesting CpDV horizontal transfer between hosts. Overall, our results provide good evidence for an ecological influence of Wolbachia on an ISV, CpDV, in natural populations and highlight the importance of integrating Wolbachia in our understanding of ISV ecology in nature.


Asunto(s)
Culex , Densovirus , Wolbachia , Animales , Culex/genética , Densovirus/genética , Filogenia , Prevalencia , Carga Viral , Wolbachia/genética
5.
Virus Evol ; 5(2): vez053, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31807318

RESUMEN

Viruses of the Parvoviridae family infect a wide range of animals including vertebrates and invertebrates. So far, our understanding of parvovirus diversity is biased towards medically or economically important viruses mainly infecting vertebrate hosts, while invertebrate infecting parvoviruses-namely densoviruses-have been largely neglected. Here, we investigated the prevalence and the evolution of the only mosquito-infecting ambidensovirus, Culex pipiens densovirus (CpDV), from laboratory mosquito lines and natural populations collected worldwide. CpDV diversity generally grouped in two clades, here named CpDV-1 and -2. The incongruence of the different gene trees for some samples suggested the possibility of recombination events between strains from different clades. We further investigated the role of selection on the evolution of CpDV genome and detected many individual sites under purifying selection both in non-structural and structural genes. However, some sites in structural genes were under diversifying selection, especially during the divergence of CpDV-1 and -2 clades. These substitutions between CpDV-1 and -2 clades were mostly located in the capsid protein encoding region and might cause changes in host specificity or pathogenicity of CpDV strains from the two clades. However, additional functional and experimental studies are necessary to fully understand the protein conformations and the resulting phenotype of these substitutions between clades of CpDV.

6.
Environ Microbiol ; 2018 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-30585387

RESUMEN

Culex pipiens densovirus (CpDV), a single stranded DNA virus, has been isolated from Culex pipiens mosquitoes but differs from other mosquito densoviruses in terms of genome structure and sequence identity. Its transmission from host to host, the nature of its interactions with both its host and host's endosymbiotic bacteria Wolbachia are not known. Here, we report the presence of CpDV in the ovaries and eggs of Cx. pipiens mosquitoes in close encounters with Wolbachia. In the ovaries, CpDV amount significantly differed between mosquito lines harbouring different strains of Wolbachia and these differences were not linked to variations in Wolbachia densities. CpDV was vertically transmitted in all laboratory lines to 17%-20% of the offspring. For some females, however, the vertical transmission reached 90%. Antibiotic treatment that cured the host from Wolbachia significantly decreased both CpDV quantity and vertical transmission suggesting an impact of host microbiota, including Wolbachia, on CpDV transmission. Overall our results show that CpDV is transmitted vertically via transovarian path along with Wolbachia with which it shares the same cells. Our results are primordial to understand the dynamics of densovirus infection, their persistence and spread in populations considering their potential use in the regulation of mosquito vector populations.

7.
PLoS Pathog ; 14(10): e1007364, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30321239

RESUMEN

Wolbachia are maternally inherited endosymbiotic bacteria, widespread among arthropods thanks to host reproductive manipulations that increase their prevalence into host populations. The most commonly observed manipulation is cytoplasmic incompatibility (CI). CI leads to embryonic death in crosses between i) infected males and uninfected females and ii) individuals infected with incompatible Wolbachia strains. CI can be conceptualized as a toxin-antidote system where a toxin deposited by Wolbachia in the sperm would induce embryonic death unless countered by an antidote produced by Wolbachia present in the eggs. In Drosophila melanogaster, transgenic expression of Wolbachia effector cidB revealed its function of CI-inducing toxin. Moreover in Culex pipiens, the diversity of cidB variants present in wPip strains accounts for the diversity in crossing-types. We conducted cytological analyses to determine the CI mechanisms that lead to embryonic death in C. pipiens, and assess whether diversity in crossing-types could be based on variations in these mechanisms. We revealed that paternal chromatin condensation and segregation defects during the first embryonic division are always responsible for embryonic death. The strongest observed defects lead to an exclusion of the paternal chromatin from the first zygotic division, resulting in haploid embryos unable to hatch. The proportion of unhatched haploid embryos, developing with only maternal chromatin, which reflects the frequency of strong defects can be considered as a proxy of CI intensity at the cellular level. We thus studied the putative effect of variations in crossing types and cidB diversification on CI defects intensity. Incompatible crosses involving distinct wPip strains revealed that CI defects intensity depends on the Wolbachia strains hosted by the males and is linked to the diversity of cidB genes harbored in their genomes. These results support that, additionally to its implication in C. pipiens crossing type variability, cidB diversification also influences the strength of CI embryonic defects.


Asunto(s)
Animales Modificados Genéticamente/microbiología , Proteínas Bacterianas/metabolismo , Culex/microbiología , Citoplasma/microbiología , Drosophila melanogaster/microbiología , Polimorfismo Genético , Wolbachia/fisiología , Animales , Animales Modificados Genéticamente/genética , Proteínas Bacterianas/genética , Culex/genética , Citoplasma/patología , Drosophila melanogaster/genética , Femenino , Infecciones por Bacterias Gramnegativas/microbiología , Infecciones por Bacterias Gramnegativas/patología , Especificidad del Huésped , Masculino , Fenotipo , Simbiosis
8.
J Fish Biol ; 93(2): 302-310, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29992566

RESUMEN

We examined specimens of the macrostigma trout Salmo macrostigma, which refers to big black spots on the flanks, to assess whether it is an example of taxonomic inflation within the brown trout Salmo trutta complex. Using new specimens, publicly available data and a mitogenomic protocol to amplify the control and cytochrome b regions of the mitochondrial genome from degraded museum samples, including one syntype specimen, the present study shows that the macrostigma trout is not a valid species. Our results suggest the occurrence of a distinct evolutionary lineage of S. trutta in North Africa and Sicily. The name of the North African lineage is proposed for this lineage, which was found to be sister to the Atlantic lineage of brown trout, S. trutta.


Asunto(s)
Filogenia , Salmonidae/clasificación , Animales , Evolución Biológica , Salmonidae/genética , Trucha/genética
9.
Genome Biol Evol ; 10(9): 2218-2239, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29931241

RESUMEN

Mitochondrial genomes of animals have long been considered to evolve under the action of purifying selection. Nevertheless, there is increasing evidence that they can also undergo episodes of positive selection in response to shifts in physiological or environmental demands. Vampire bats experienced such a shift, as they are the only mammals feeding exclusively on blood and possessing anatomical adaptations to deal with the associated physiological requirements (e.g., ingestion of high amounts of liquid water and iron). We sequenced eight new chiropteran mitogenomes including two species of vampire bats, five representatives of other lineages of phyllostomids and one close outgroup. Conducting detailed comparative mitogenomic analyses, we found evidence for accelerated evolutionary rates at the nucleotide and amino acid levels in vampires. Moreover, the mitogenomes of vampire bats are characterized by an increased cytosine (C) content mirrored by a decrease in thymine (T) compared with other chiropterans. Proteins encoded by the vampire bat mitogenomes also exhibit a significant increase in threonine (Thr) and slight reductions in frequency of the hydrophobic residues isoleucine (Ile), valine (Val), methionine (Met), and phenylalanine (Phe). We show that these peculiar substitution patterns can be explained by the co-occurrence of both neutral (mutational bias) and adaptive (positive selection) processes. We propose that vampire bat mitogenomes may have been impacted by selection on mitochondrial proteins to accommodate the metabolism and nutritional qualities of blood meals.


Asunto(s)
Quirópteros/genética , Genoma Mitocondrial , Sustitución de Aminoácidos , Aminoácidos/genética , Animales , Evolución Biológica , Quirópteros/fisiología , Evolución Molecular , Conducta Alimentaria , Proteínas Mitocondriales/genética , Proteínas Nucleares/genética , Nucleótidos/genética , Filogenia
10.
Nat Commun ; 9(1): 1491, 2018 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-29643367

RESUMEN

In the originally published HTML and PDF versions of this Article, gel images in Figures 7c and 8c were not prepared as per the Nature journal policy. These figure panels have now been corrected in both the PDF and HTML versions of the Article.In Fig. 7c, the lane labelled 'Ha' was inappropriately duplicated to represent the lane labelled 'Ich13'. The corrected version of Fig. 7c includes PCR-RFLP on DNA from the Ichkeul 13 line, which had been run on a separate gel. The original unprocessed gel images are provided in Supplementary Figure 1 associated with this correction, with the relevant corresponding bands denoted. A repeat experiment of the PCR-RFLP test is also presented as Supplementary Figure 2.In Fig. 8c, the image was assembled from two separate gels without clear demarcation. The corrected Fig. 8c clearly separates lanes from the two gels, and the original unprocessed gel images are provided in the Supplementary Information associated with this correction.These corrections do not alter the original meaning of the experiments, their results, their interpretation, or the conclusions of the paper. We apologize for any confusion this may have caused to the readers of Nature Communications.

11.
Nat Commun ; 9(1): 319, 2018 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-29358578

RESUMEN

Culex pipiens mosquitoes are infected with Wolbachia (wPip) that cause an important diversity of cytoplasmic incompatibilities (CIs). Functional transgenic studies have implicated the cidA-cidB operon from wPip and its homolog in wMel in CI between infected Drosophila males and uninfected females. However, the genetic basis of the CI diversity induced by different Wolbachia strains was unknown. We show here that the remarkable diversity of CI in the C. pipiens complex is due to the presence, in all tested wPip genomes, of several copies of the cidA-cidB operon, which undergoes diversification through recombination events. In 183 isofemale lines of C. pipiens collected worldwide, specific variations of the cidA-cidB gene repertoires are found to match crossing types. The diversification of cidA-cidB is consistent with the hypothesis of a toxin-antitoxin system in which the gene cidB co-diversifies with the gene cidA, particularly in putative domains of reciprocal interactions.


Asunto(s)
Proteínas Bacterianas/genética , Culex/microbiología , Drosophila melanogaster/microbiología , Genoma Bacteriano , Operón , Wolbachia/genética , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Cruzamientos Genéticos , Culex/genética , Drosophila melanogaster/genética , Femenino , Especificidad del Huésped , Masculino , Polimorfismo Genético , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Simbiosis/genética , Sistemas Toxina-Antitoxina/genética , Wolbachia/metabolismo
12.
Virus Evol ; 4(1): vex040, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29340209

RESUMEN

In the global context of arboviral emergence, deep sequencing unlocks the discovery of new mosquito-borne viruses. Mosquitoes of the species Culex pipiens, C. torrentium, and C. hortensis were sampled from 22 locations worldwide for transcriptomic analyses. A virus discovery pipeline was used to analyze the dataset of 0.7 billion reads comprising 22 individual transcriptomes. Two closely related 6.8 kb viral genomes were identified in C. pipiens and named as Culex pipiens associated tunisia virus (CpATV) strains Ayed and Jedaida. The CpATV genome contained four ORFs. ORF1 possessed helicase and RNA-dependent RNA polymerase (RdRp) domains related to new viral sequences recently found mainly in dipterans. ORF2 and 4 contained a capsid protein domain showing strong homology with Virgaviridae plant viruses. ORF3 displayed similarities with eukaryotic Rhoptry domain and a merozoite surface protein (MSP7) domain only found in mosquito-transmitted Plasmodium, suggesting possible interactions between CpATV and vertebrate cells. Estimation of a strong purifying selection exerted on each ORFs and the presence of a polymorphism maintained in the coding region of ORF3 suggested that both CpATV sequences are genuine functional viruses. CpATV is part of an entirely new and highly diversified group of viruses recently found in insects, and that bears the genomic hallmarks of a new viral family.

13.
J Hered ; 109(4): 347-359, 2018 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-29140441

RESUMEN

Pangolins, considered the most-trafficked mammals on Earth, are rapidly heading to extinction. Eight extant species of these African and Asian scale-bodied anteaters are commonly recognized, but their evolutionary relationships remain largely unexplored. Here, we present the most comprehensive phylogenetic assessment of pangolins, based on genetic variation of complete mitogenomes and 9 nuclear genes. We confirm deep divergence among Asian and African pangolins occurring not later than the Oligocene-Miocene boundary ca. 23 million years ago (Ma) (95% HPD = 18.7-27.2), limited fossil evidence suggesting dispersals from Europe. We recognize 3 genera including Manis (Asian pangolins), Smutsia (large African pangolins), and Phataginus (small African pangolins), which first diversified in the Middle-Upper Miocene (9.8-13.3 Ma) through a period of gradual cooling coinciding with a worldwide taxonomic diversification among mammals. Based on large mitogenomic distances among the 3 genera (18.3-22.8%) and numerous (18) morphological traits unique to Phataginus, we propose the subfamily Phatagininae subfam. nov. to designate small African pangolins. In contrast with the morphological-based literature, our results establish that the thick-tailed pangolin (Manis crassicaudata) is sister-species of the Sunda (Manis javanica) and Palawan (Manis culionensis) pangolins. Mitogenomic phylogenetic delineations supported additional pangolin species subdivisions (n = 13), including 6 African common pangolin (Phataginus tricuspis) lineages, but these patterns were not fully supported by our multi-locus approach. Finally, we identified more than 5000 informative mitogenomic sites and diagnostic variation from 5 nuclear genes among all species and lineages of pangolins, providing an important resource for further research and for effectively tracing the worldwide pangolin trade.


Asunto(s)
Variación Genética , Genoma/genética , Xenarthra/genética , África , Animales , Asia , Evolución Biológica , Núcleo Celular/genética , Especies en Peligro de Extinción , Genoma Mitocondrial/genética , Mamíferos/anatomía & histología , Mamíferos/clasificación , Mamíferos/genética , Filogenia , Xenarthra/anatomía & histología , Xenarthra/clasificación
14.
Mol Biol Evol ; 34(3): 613-633, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28025278

RESUMEN

Echimyidae is one of the most speciose and ecologically diverse rodent families in the world, occupying a wide range of habitats in the Neotropics. However, a resolved phylogeny at the genus-level is still lacking for these 22 genera of South American spiny rats, including the coypu (Myocastorinae), and 5 genera of West Indian hutias (Capromyidae) relatives. Here, we used Illumina shotgun sequencing to assemble 38 new complete mitogenomes, establishing Echimyidae, and Capromyidae as the first major rodent families to be completely sequenced at the genus-level for their mitochondrial DNA. Combining mitogenomes and nuclear exons, we inferred a robust phylogenetic framework that reveals several newly supported nodes as well as the tempo of the higher level diversification of these rodents. Incorporating the full generic diversity of extant echimyids leads us to propose a new higher level classification of two subfamilies: Euryzygomatomyinae and Echimyinae. Of note, the enigmatic Carterodon displays fast-evolving mitochondrial and nuclear sequences, with a long branch that destabilizes the deepest divergences of the echimyid tree, thereby challenging the sister-group relationship between Capromyidae and Euryzygomatomyinae. Biogeographical analyses involving higher level taxa show that several vicariant and dispersal events impacted the evolutionary history of echimyids. The diversification history of Echimyidae seems to have been influenced by two major historical factors, namely (1) recurrent connections between Atlantic and Amazonian Forests and (2) the Northern uplift of the Andes.


Asunto(s)
Genoma Mitocondrial , Mitocondrias/genética , Roedores/genética , Animales , Secuencia de Bases , Teorema de Bayes , Evolución Biológica , ADN Mitocondrial/genética , Evolución Molecular , Variación Genética , Filogenia , Filogeografía/métodos , Ratas , Análisis de Secuencia de ADN/métodos , América del Sur
15.
J Hered ; 108(3): 270-279, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-27940474

RESUMEN

The biogeographic dynamics affecting the Indian subcontinent, East and Southeast Asia during the Plio-Pleistocene has generated complex biodiversity patterns. We assessed the molecular biogeography of the small Indian civet (Viverricula indica) through mitogenome and cytochrome b + control region sequencing of 89 historical and modern samples to (1) establish a time-calibrated phylogeography across the species' native range and (2) test introduction scenarios to western Indian Ocean islands. Bayesian phylogenetic analyses identified 3 geographic lineages (East Asia, sister-group to Southeast Asia and the Indian subcontinent + northern Indochina) diverging 3.2-2.3 million years ago (Mya), with no clear signature of past demographic expansion. Within Southeast Asia, Balinese populations separated from the rest 2.6-1.3 Mya. Western Indian Ocean populations were assigned to the Indian subcontinent + northern Indochina lineage and had the lowest mitochondrial diversity. Approximate Bayesian computation did not distinguish between single versus multiple introduction scenarios. The early diversification of the small Indian civet was likely shaped by humid periods in the Late Pliocene-Early Pleistocene that created evergreen rainforest barriers, generating areas of intra-specific endemism in the Indian subcontinent, East, and Southeast Asia. Later, Pleistocene dispersals through drier conditions in South and Southeast Asia were likely, giving rise to the species' current natural distribution. Our molecular data supported the delineation of only 4 subspecies in V. indica, including an endemic Balinese lineage. Our study also highlighted the influence of prefirst millennium AD introductions to western Indian Ocean islands, with Indian and/or Arab traders probably introducing the species for its civet oil.


Asunto(s)
Filogenia , Filogeografía , Viverridae/clasificación , Viverridae/genética , Animales , Citocromos b/genética , ADN Mitocondrial , Evolución Molecular , Frecuencia de los Genes , Variación Genética , Genoma Mitocondrial , Haplotipos , Islas del Oceano Índico
16.
Genetica ; 144(4): 469-76, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27406582

RESUMEN

The screaming hairy armadillo (Chaetophractus vellerosus) is a mammal species containing disjunct and isolated populations. In order to assess the effect of habitat fragmentation and geographic isolation, we developed seven new microsatellite loci isolated from low-coverage genome shotgun sequencing data for this species. Among these loci, six microsatellites were found to be polymorphic with 8-26 alleles per locus detected across 69 samples analyzed from a relictual population of the species located in the northeast of the Buenos Aires Province (Argentina). Mean allelic richness and polymorphic information content were 15 and 0.75, with observed and expected heterozygosities ranging from 0.40 to 0.67 and 0.58 to 0.90, respectively. All loci showed departures from Hardy-Weinberg equilibrium. The analysis of population structure in this relictual population revealed three groups of individuals that are genetically differentiated. These newly developed microsatellites will constitute a very useful tool for the estimation of genetic diversity and structure, population dynamics, social structure, parentage and mating system in this little-studied armadillo species. Such genetic data will be particularly helpful for the development of conservation strategies for this isolated population and also for the endangered Bolivian populations previously recognized as a distinct species (Chaetophractus nationi).


Asunto(s)
Armadillos/genética , Sitios Genéticos , Genética de Población , Repeticiones de Microsatélite , Animales , Argentina , Geografía
17.
Appl Plant Sci ; 3(12)2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26697274

RESUMEN

PREMISE OF THE STUDY: Multiplexed microsatellite markers were developed for population genetic studies in the pseudometallophyte Noccaea caerulescens (Brassicaceae), a model species to investigate metal tolerance and hyperaccumulation in higher plants. METHODS AND RESULTS: Microsatellite loci were isolated through pyrosequencing of an enriched DNA library. Three multiplexes combining four previously published and 17 newly designed markers were developed. The new markers were screened in metallicolous and nonmetallicolous populations from southern France. The total number of alleles per locus ranged from five to 18. The observed heterozygosity per locus and per population ranged from 0 to 0.83, and expected heterozygosity ranged from 0 to 0.89. CONCLUSIONS: The investigated loci showed reasonable to high levels of polymorphism at the regional scale. The multiplex set should be helpful in investigating genetic diversity, population structure, and demographic history in N. caerulescens at various spatial scales.

18.
Evolution ; 68(10): 2775-92, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24957971

RESUMEN

Natural selection is expected to cause convergence of life histories among taxa as well as correlated evolution of different life-history traits. Here, we quantify the extent of convergence of five key life-history traits (adult fire survival, seed storage, degree of sexual dimorphism, pollination mode, and seed-dispersal mode) and test hypotheses about their correlated evolution in the genus Leucadendron (Proteaceae) from the fire-prone South African fynbos. We reconstructed a new molecular phylogeny of this highly diverse genus that involves more taxa and molecular markers than previously. This reconstruction identifies new clades that were not detected by previous molecular study and morphological classifications. Using this new phylogeny and robust methods that account for phylogenetic uncertainty, we show that the five life-history traits studied were labile during the evolutionary history of the genus. This diversity allowed us to tackle major questions about the correlated evolution of life-history strategies. We found that species with longer seed-dispersal distances tended to evolve lower pollen-dispersal distance, that insect-pollinated species evolved decreased sexual dimorphism, and that species with a persistent soil seed-bank evolved toward reduced fire-survival ability of adults.


Asunto(s)
Evolución Biológica , Filogenia , Proteaceae/clasificación , Proteaceae/fisiología , ADN de Plantas/genética , Funciones de Verosimilitud , Polinización/genética , Dispersión de Semillas/genética , Análisis de Secuencia de ADN
19.
Genome Biol Evol ; 6(3): 591-605, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24572017

RESUMEN

Ascidians are a fascinating group of filter-feeding marine chordates characterized by rapid evolution of both sequences and structure of their nuclear and mitochondrial genomes. Moreover, they include several model organisms used to investigate complex biological processes in chordates. To study the evolutionary dynamics of ascidians at short phylogenetic distances, we sequenced 13 new mitogenomes and analyzed them, together with 15 other available mitogenomes, using a novel approach involving detailed whole-mitogenome comparisons of conspecific and congeneric pairs. The evolutionary rate was quite homogeneous at both intraspecific and congeneric level, and the lowest congeneric rates were found in cryptic (morphologically undistinguishable) and in morphologically very similar species pairs. Moreover, congeneric nonsynonymous rates (dN) were up to two orders of magnitude higher than in intraspecies pairs. Overall, a clear-cut gap sets apart conspecific from congeneric pairs. These evolutionary peculiarities allowed easily identifying an extraordinary intraspecific variability in the model ascidian Botryllus schlosseri, where most pairs show a dN value between that observed at intraspecies and congeneric level, yet consistently lower than that of the Ciona intestinalis cryptic species pair. These data suggest ongoing speciation events producing genetically distinct B. schlosseri entities. Remarkably, these ongoing speciation events were undetectable by the cox1 barcode fragment, demonstrating that, at low phylogenetic distances, the whole mitogenome has a higher resolving power than cox1. Our study shows that whole-mitogenome comparative analyses, performed on a suitable sample of congeneric and intraspecies pairs, may allow detecting not only cryptic species but also ongoing speciation events.


Asunto(s)
Ciona intestinalis/clasificación , Ciona intestinalis/genética , Evolución Molecular , Genoma Mitocondrial , Animales , ADN Mitocondrial/genética , Orden Génico , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Sistemas de Lectura Abierta/genética , Filogenia , Análisis de Secuencia de ADN , Especificidad de la Especie
20.
Mol Phylogenet Evol ; 70: 37-46, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23948865

RESUMEN

Despite the recent advances in generating molecular data, reconstructing species-level phylogenies for non-models groups remains a challenge. The use of a number of independent genes is required to resolve phylogenetic relationships, especially for groups displaying low polymorphism. In such cases, low-copy nuclear exons and non-coding regions, such as 3' untranslated regions (3'-UTRs) or introns, constitute a potentially interesting source of nuclear DNA variation. Here, we present a methodology meant to identify new nuclear orthologous markers using both public-nucleotide databases and transcriptomic data generated for the group of interest by using next generation sequencing technology. To identify PCR primers for a non-model group, the genus Leucadendron (Proteaceae), we adopted a framework aimed at minimizing the probability of paralogy and maximizing polymorphism. We anchored when possible the right-hand primer into the 3'-UTR and the left-hand primer into the coding region. Seven new nuclear markers emerged from this search strategy, three of those included 3'-UTRs. We further compared the phylogenetic potential between our new markers and the ribosomal internal transcribed spacer region (ITS). The sequenced 3'-UTRs yielded higher polymorphism rates than the ITS region did. We did not find strong incongruences with the phylogenetic signal contained in the ITS region and the seven new designed markers but they strongly improved the phylogeny of the genus Leucadendron. Overall, this methodology is efficient in isolating orthologous loci and is valid for any non-model group given the availability of transcriptomic data.


Asunto(s)
Filogenia , Proteaceae/genética , Núcleo Celular/genética , ADN de Plantas/genética , Marcadores Genéticos , Secuenciación de Nucleótidos de Alto Rendimiento , Polimorfismo Genético , Análisis de Secuencia de ADN , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...